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We derive remarkably tight uppes and lowes bounds on  the soft
decoding error probability for block codes of lengthn with M equally
likely, equal-cnieigy codewords¢;, 7= 0, ..., M 1, representedinn-
dimensionalluclidcan space and receivedinthe presenceof additive
white Gaussian noise. These bounds show significant improvement
over well-k nown bounds, e.g., theunionupper bound, Betlekamp’s
tangentialunion bound, and Shannon’s sphere packing bounds,

Following Shannon| 1], we consider the differentially thin con-
icnlshcll(lS,, (0) between lwo circular cones of half-angles ¢ and
0-1d0,cach with verlex al the origin and axis passing through
the correct codeword ¢, This shell contains a fraction d€2, (0) -

“y! i',;‘,’,‘{f)‘ ) (sin 0)7 2d0 of the total solid angle in n-dimensional
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space. Lot a given code, a certain fraction of the shell’s solid an-
gle fails outside 'S Vomn()ircgi(m,WC call this fraction the code
geometry function I (0).1tdepends on the geometry of the coqc, but
noton the Gaussian noise distribution.

Since the noise is spherically symmetric and the Voronoi region is
bounded by hyperplanes through the origin, the probability of code-
word errot 7% ¢ i be writlen as P, - f”ﬂ F@) (/3 (0), whese (/7°(0)
is the probability that the received word falls \;’ilhin 48, o), given by
dro) - ?,l/jf/h‘[?;’;’?l,)(sin R B e LA TN
p is proportional to the signal-to-noise ratio (SNR) [ 1]

Thisseparation of the code geomeltry and the Gaussian noise dis-
tribution has allowedis to develop cxtremely tight bounds on /7, by
first bounding the code gecometry function }(0). Yor instance, F(0)
can be upperbounded by a unjon-bound summation,
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where f,(0) = cos '(max]| - 1, min| 1, y,cot0]]), and v, is the tan-
gent of half the angle between codewords ¢ and ¢;. The ith termiin
the summation repiresents the fraction of dS,(0) that is nearet to ¢
than to ¢y,

Similarly, '(0) canbe lower bounded by union-hounding the frac-
tion of S, (¢ that is nearet o ¢, than 10 ¢y but is not within ¢,’s
Voronoi region, i.c., I'(0) > 1 (0), where
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where g (0,) = cos "(max]- 1, min|1, y;cot0 1) and y;; is the tan-

gentof half (he angle between the projections of ¢; and C; into the
subspace otthogonal to ¢y, The bounds on F/(0) can be extended into
analternating series of successively tighter upper and low er bounds,
ler minating in an exact expression after (n 1) iterations,

Bounds on the code geometry function /() translte dir ectly into
bounds 01117, ,

/ Fwydaro) fr<ro<p d / F1(0) dP).
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The figure illustrates the precision of the new bounds applied to the
(8.4)extended I lamming code, for which the exact /’cis known, The
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improved bounds 77, and /7 are virtually indisti ng uishable from the
truc /7, , as comparcd to the standard union bound, Beslekamp's tan-
gential union bound, and Shannon’s sphere packing lower bound, We
have computed these new bounds for codes upton: 72 and verified
that they are extr emely tight even at Jow SNR,

Bounds even tighter than 2, and 7 are oblained using F, (0) and
F(0) simultancously, if thetotal solid angle of ¢’s Yoronoiregion is
known, c.g., f: F@0) d82, (0) = 1 »A', for distance invatiant codes.
This technique generalizes a p rocedur e developed by Shannon|[17 that
relics on the monotonicity of the Gaussian probability density. Then
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where 1, (0) = [I';(())‘()>() o B0y - {l" 0,0 = 0,

and 0., and O, arc any angles large enough 10
Jo b (@) d2,(0) < ‘f“" F(0) dS2, (0) < [ F, (0) dS2, (0).

The technique of separating the code geomelry function #/(0) and
the Gaussian noise disttibution also simplifies Monte Carto simu-
lations of code peiformance. A single simulation may be used to
estimate F'(0)forthe code, andthen the entire P, vs. SNR perfor-
nance curve can be detetmined by integrating with respect to d 1°(0).
The code geometry function #/(€) may be simulated by gencrating
Gaussiannoisesamples added 10 ¢ and performing a decoding oper-
ation to delermine the fraction of samples atangle 0 that fall outside
c o’s Voronoi region, Analternative technique uses (n-1)-dimensional
Gaussian noise samples orthogonal to ¢y and computes the minimum
angle 0 al which a scaled version of the noise would cause the received
word 10 leave ¢;,’s Voronoiregion. ‘Ibis Jatteriechnique allows each
sample to contribute information about 1 (0) for all va lues of 0,

Othernresolts include exact crror probabilities for soft bounded dis-
tance decoders, raindom coding bounds based on an “average” F(0),
and possible extensions to convolutional codes and latlices.
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